2024-01-02 22:20:52 | 清风网
2022高中必背88个数学公式有哪些,我整理了相关信息,希望会对大家有所帮助!
圆的公式
1、圆体积=4/3(pi)(r^3)
2、面积=(pi)(r^2)
3、周长=2(pi)r
4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】
5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】
椭圆公式
1、椭圆周长公式:l=2πb+4(a-b)
2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.
3、椭圆面积公式:s=πab
4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。
两角和公式
1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)
2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)
3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))
4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))
和差化积
1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)
2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)
3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb
5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb
等差数列
1、等差数列的通项公式为:
an=a1+(n-1)d(1)
2、前n项和公式为:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式.
3、从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,则有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.
和=(首项+末项)*项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
项数=(末项-首项)/公差+1
等比数列
1、等比数列的通项公式是:An=A1*q^(n-1)
2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)
且任意两项am,an的关系为an=am·q^(n-m)
3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
4、若m,n,p,q∈N*,则有:ap·aq=am·an,
等比中项:aq·ap=2arar则为ap,aq等比中项.
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.
性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;
②在等比数列中,依次每k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
在等比数列中,首项A1与公比q都不为零.
抛物线
1、抛物线:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。
a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。
2、顶点式y=a(x+h)*+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。
3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。
4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2pxx^2=2pyx^2=-2py。
一、正余弦定理
正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径
余弦定理:a2=b2+c2-2bc*cosA
二、诱导公式
一:设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)
二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα
三:任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα
四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα
五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα
六:π/2±α及3π/2±α与α的三角函数值之间的关系:
三、两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB 清风网
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
四、倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
五、半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
六、和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
七、某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
清风网(https://www.mfqdd.com)小编还为大家带来2022年高考数学必备公式汇总的相关内容。
高考数学涉及方方面面,涵盖的知识点也很多,数学公式也很多。有些同学总是习惯在做题的时候翻看高考数学必备公式汇总的一些书,知识是不断积累到脑海里的,不能现用现看。同时数学公式是高考数学必备知识点,所以我整理了高考常用数学公式汇总供同学们参考。数学高考必备公式数学高考必备公式如下:1.三角函数公式:sin²θ+cos²θ=1;tanθ=sinθ/cosθ;cotθ=cosθ/sinθ。2.平面几何公式:长方形面积公式:S=a×b;三角形面积公式:S=1/2×底边长×高;圆的面积公式:S=πr²;球的表面积公式:S=4πr²;球的体积公式:V=4/3πr³3.解方程公式:二次方程求根公式:x=[-b±√(b²
高中物理公式,高考必备磁感应强度是描述磁场强度与方向的物理量,作为矢量单位为特斯拉(T),换算关系1T等于1牛/安米(N/A·m)。安培力公式为F=BIL,其中B代表磁感应强度,F表示安培力,I是电流强度,L是导线长度。此公式适用于电流在磁场中受到的力。洛仑兹力表达式为f=qVB,这里f代表洛仑兹力,q为带电粒子的电量,V为粒子速度,B为磁场强度。洛仑兹力仅作用于带电粒子,垂直于
高考物理常用公式高考物理常用公式包括但不限于以下几个方面:力学、热力学、电学、光学等。下面将从这几个方面来介绍高考物理常用公式,帮助考生在备考时更好地掌握这些公式。首先,力学是高考物理中重要的一部分,其中常用的公式包括牛顿第二定律F=ma,弹性势能E=1/2kx^2,动能E=1/2mv^2,万有引力定律F=Gm1m2/r^2等等。这些公式涵盖了物理学中很多关键概念的描述,如物体的
2025年新高考政策法律分析:1.少数民族自治州、自治县及经国家批准享受民族自治地方优惠政策待遇的张家界市永定区、武陵源区和桑植县的少数民族考生加20分,面向全国招生高校投档录取使用。自2023年高考起,该加分项目分值由加20分调减为加15分,2025年高考起调减为加10分。2.自2023年高考起,少数民族乡的少数民族考生加分项目调整为地方性加分项目,加分分值由加20分调减为加10分
高考物理必备公式整理大全为了帮助考生从知识点的角度进行高考物理复习,使考生能够更为系统的梳理物理知识点,下面是我整理分享的高考物理必备公式大全,欢迎阅读与借鉴,希望对你们有帮助!高考物理公式(基础版)匀速直线运动的位移公式:x=vt匀变速直线运动的速度公式:v=v0+at匀变速直线运动的位移公式:x=v0t+at2/2向心加速度的关系:a=ω2ra=v2/
高考数学知识点2023高考数学是一门比较占分的科目,但数学也比较难,难在它的深度和广度,但如果能理清思路,抓住重点,多加练习,学渣变学霸也不是不可能的。高考数学知识点2023有哪些?一起来看看高考数学知识点2023,欢迎查阅!高中数学各知识点公式定理记忆口诀集合与函数内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。复合函数式出现,性质乘法法则辨,
2024年河北省美术生综合分计算公式综合分=(考生文考总分+政策性加分)×30%+考生省级专业统考成绩×70%。综合分,也就是艺术省统考专业成绩和文化成绩按不同比例折算后,得出的艺术类考生的总成绩。高考美术生综合分的计算方法不同的省份,学校是不一样的。对高考文化成绩要求高的文化成绩的比例就高点,对艺术统考成绩要求高的艺术统考分数所占的比例就高一点。本文所说的投档排序都是在专业课成
2025年四川省新高考模式解析,新高考家长必读!四川新高考,自2022年起全面启动,2025年正式实施“3+1+2”模式。“3+1+2”模式具体为:语文、数学、外语作为基础科目,物理和历史为必选科目,化学、生物、地理、政治四科中任选两科,考试成绩采用等级赋分。“3”指语文、数学、外语,以原始成绩计入总分;“1”指物理和历史,由各省份自主命题,以原始成绩计入总分;“2”指化学、生物
2025-02-08 17:55:19
2025-02-15 11:16:49
2025-01-27 00:48:05
2024-09-19 14:21:52
2025-01-07 22:23:40
2024-11-22 23:12:03